ABDULLAH GÜL UNIVERSITY GRADUATE SCHOOL OF ENGINEERING & SCIENCE MATERIALS SCIENCE AND MECHANICAL ENGINEERING PROGRAM COURSE DESCRIPTION AND SYLLABUS

Course Title	Code	Semester	T+L Hours	Credit	ECTS
Microstructure Engineering	MSME 683	SPRING	3 + 0	3	10

Prerequisite Courses

Basic knowledge on material science

Туре	Elective		
Language	English		
Coordinator	Burak Bal		
Instructor	Burak Bal		
Adjunt	none		
Aim	To learn the relationship between mechanical properties of materials and microstructure and obtain a good knowledge on crystal plasticity and multi-scale modeling.		
Learning Outcomes	 Learning the relationship between mechanical properties of materials and microstructure Learning the defects in materials and their effects Learning the elastic deformation & plastic deformation at both micro and macro scales. Learning the fracture mechanisms in materials. Learning the effects of hydrogen interstitial on the microstructure of materials. Learning the diffusion and localization of atomic hydrogen both close and far away from dislocations. Learning the stacking faults in materials. Learning the effects of dynamic strain aging and the corresponding strain rate sensitivity. Learning the fatigue at both micro and macro scales. Learning the crystal plasticity modeling. Learning to multi-scale modeling approach. 		
Course Content	 Introduction to microstructure the relationship between mechanical properties of materials and microstructure Material defects Elasticity-Plasticity Ductile and brittle fracture Investigation of hydrogen embrittlement Dislocation-hydrogen atom interactions The effect of dynamic strain aging on material response Fatigue Crystal plasticity modeling Multi-scale modeling 		

WEEKLY TOPICS AND PRELIMINARY STUDY					
Week	Торіс	Preliminary Study			
1	Introduction to Material Science and Microstructure	The relevant articles from the literature			
2	Dislocations, Inclusion, Stacking faults	The relevant articles from the literature			
3	Elasticity	The relevant articles from the literature			
4	Plasticity	The relevant articles from the literature			
5	Fracture	The relevant articles from the literature			
6	Hydrogen Embrittlement	The relevant articles from the literature			
7	Midterm I				
8	Dislocation – Interstitials atom interactions	The relevant articles from			

		the literature
9	Dynamic Strain Aging	The relevant articles from the literature
10	Microstructure under Low-cycle fatigue	The relevant articles from the literature
11	Microstructure under High-cycle fatigue	The relevant articles from the literature
12	Crystal Plasticity Modeling	The relevant articles from the literature
13	Crystal Plasticity Modeling	The relevant articles from the literature
14	Multiscale Modeling considering microstructural changes	The relevant articles from the literature
15	Multiscale Modeling considering microstructural changes	The relevant articles from the literature
16	Final Exam	

SOURCES	
Lecture Notes	Lecture notes and presentations
Other Sources	 "Mechanical Behavior of Materials," by William F. Hosford; Cambridge; ISBN-10: 0521846706 Mechanical Behavior of Materials, Thomas H. Courtney, McGraw Hill Introduction to Dislocations, D Hull & DJ Bacon, Butterworth-Heinemann Theory of Dislocations, Hirth & Lothe, Krieger Crystals, Defects, and Microstructure, Rob Phillips, Cambridge

COURSE MATERIALS SHARING			
Documents	Lectures notes will be shared on the internet		
Homeworks	There will be 4 homework		
Exams	1 midterm and 1 final exam		

EVALUATION SYSTEM						
SEMESTER STUDY	NUMBER	CONTRIBUTION				
Project	1	%50				
Midterm	1	%15				
Homework	4	%15				
Final	1	%20				
SUB-TOTAL	6	100				
Contribution of Semester Study		%80				
Contribution of Final Exam	1	%20				
TOTAL	6	100				

Course Category					
Sciences and Mathematics					
Engineering	100%				
Social Sciences					

RE	RELATIONSHIPS BETWEEN LEARNING OUTCOMES AND PROGRAM QUALIFICATIONS							
No	Program Qualifications	Co	Contribution Level					
		1	2	3	4	5		
1	Accessing knowledge, evaluating and interpreting information by doing scientific research in the field of Materials Science and Mechanical Engineering					x		
2	Ability to use science and engineering knowledge for development of new methods in Materials Science and Mechanical Engineering					x		
3	To be able to understand and analyze materials by using basic knowledge on Materials Science and Mechanical Engineering					x		

4	Design and implement analytical, modeling and experimental research			х
5	Solve and interpret the problems encountered in experimental research		х	
6	Considering scientific and ethical values during the collection and interpretation of data	x		
7	Integrating knowledge of different disciplines with the help of scientific methods, and completion and implementation of scientific knowledge using data			х
8	To gain leadership ability and responsibility in disciplinary and interdisciplinary team works		x	
9	To be able to contribute to the solution of social, scientific and ethical problems encountered in the field of Materials Science and Mechanical Engineering			x
10	To be able to define, interpret and create new information about the interactions between various discipline of Materials Science and Mechanical Engineering			x

*Increasing from 1 to 5.

ECTS / WORK LOAD TABLE							
Activities	Number	Duration (Hours)	Total Work Load				
Course Length (includes exam weeks: 16x total course hours)	16 weeks	3	48				
Out-of-class Study Time (Pre-study, practice)	16 weeks	2	32				
Reading	16 weeks	1	16				
Internet search, library work, literature search	16 weeks	2	32				
Report Preparation	2	48	96				
Presentation Preparation	2	24	48				
Presentation	1	2	2				
Homework	4	5	20				
Midterm	1	3	3				
Final Exam	1	3	3				
Total Work Load			300				
Total Work Load / 30			300/30				
Course ECTS Credit			10				